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Measurements of the relation between mass hold-up and flow rate have been made 
for glass beads in fully developed flow down an inclined chute, over the whole range 
of inclinations for which such flows are possible. Velocity profiles in the flowing 
material have also been measured. For a given inclination it is found that two 
different flow regimes may exist for each value of the flow rate in a certain interval. 
One is an ‘energetic’ flow, and is produced when the particles are dropped into the 
chute from a height, while the other is relatively quiescent and occurs when entry to 
the chute is regulated by a gate. At  some values of the inclination jumps in the flow 
pattern occur between these branches, and it is even possible for both branches to 
coexist in the same chute, separated by a shock. A theoretical treatment of chute flow 
has been based on a rheological model of the material which takes into account both 
collisional and frictional mechanisms for generating stress. Its predictions include 
most aspects of the observed behaviour, but quantitative comparison of theory and 
experiment is difficult because of the uncertain values of some parameters appearing 
in the theory. 

1. Introduction 
Particulate flow behaviour is governed by interactions occurring at the 

microstructural, or particle level. For granular flows in which interstitial fluid effects 
are negligible the mechanical behaviour is determined entirely by the forces exerted 
at particle-particle contacts. For the case of slow deformation and high density, 
particles sustain contact as they slide relative to one another. Normal and tangential 
frictional forces at points of contact then dominate the flow behaviour. The rapid 
shearing of low-density particle assemblies, on the other hand, induces vigorous 
particle motions, contacts are of short duration, and momentum is transmitted when 
particles collide. 

In the past most models of particulate flow behaviour assumed that one of the two 
limiting stress generation mechanisms, friction or collisions, dominated and governed 
the flow behaviour. Constitutive theories originating from soil mechanics (Coulomb 
1776; Reynolds 1885; Drucker & Prager 1952; de Jong 1959; Schofield & Wroth 
1968) focus on the slow deformation-high density limit. These descriptions of quasi- 
static motion are mostly empirical in nature and require much experimental data to 
characterize any material’s behaviour. The opposite rapid shear-low density limit 
has been modelled more recently by the so-called ‘kinetic grain theories’ that draw 
analogies between high shear rate particulate motions and the movement of gas 
molecules (Jenkins & Savage 1983; Haff 1983; Lun et al. 1984; Jenkins & Richman 
1985). The main difference from molecular motion is that particleparticle collisions 
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are inelastic. In this regime inertial effects are dominant and constitutive expressions 
are derived by following established procedures of the kinetic theory of dense gases. 
The collisional-kinetic constitutive expressions derived by this approach are related 
to  physical properties of the material, such as the grain diameter and density, and 
to the ‘grain temperature’. This new quantity, which is analogous to the 
thermodynamic temperature of a gas or liquid, is a measure of the kinetic energy of 
random motion of the particles. 

Most flows of practical interest fall into the intermediate regime where both 
frictional contach and particle-particle collisions are significant. As yet there are no 
established theories that describe the flow behaviour in these conditions. The 
frictional-collisional model proposed by Johnson & Jackson (1987) is a simplistic 
attempt to combine the available constitutive theories for rapid and slow 
deformation rate flows without introducing any new parameters. This model is at 
best an expedient awaiting the development of more fundamentally based theories, 
but it does allow one to investigate the relative roles of the two limiting stress 
mechanisms. It has been applied to  the problem of horizontal plane shearing by 
Johnson & Jackson (1987), who compared its predictions with experimental 
observations in an annular shear cell. 

Annular shear cells and inclined chute flows are the two flow geometries most 
suitable for comparison with theoretical predictions. Relatively detailed data from 
the former have been provided by Savage & Sayed (1984), but comparable data from 
inclined chute experiments are not available, though many studies have been 
reported (Augenstein & Hogg 1978; Savage 1978, 1979, 1983; Ishida & Shirai 1979; 
Brennen, Sieck & Paslaski 1983; Campbell, Brennen & Sabersky 1985; Patton, 
Brennen & Sabersky 1987). Unfortunately the information needed to compare these 
experimental observations with predictions of the theory is seldom provided ; for 
example, the most recent work of Patton et al. is based on extensive measurements 
of flow rate, depth and mean density, but these are not reported directly, nor are the 
corresponding values of the chute inclination. I n  this paper we present predictions of 
flows down inclined planes, using the frictional-collisional model, and compare them 
with observations on an experimental chute. This case is an excellent example of the 
need for models that incorporate both of the limiting stress mechanisms. Calculations 
indicate that neither limiting model can predict much of the observed behaviour, 
while the experimental observations include behaviour not previously reported. The 
full model, while far from satisfactory as a quantitative predictor, has fair success in 
reproducing the overall pattern of observed behaviour. 

2. Equations of motion and boundary conditions 
2.1. Governing equations 

In  a previous paper (Johnson & Jackson 1987) the following equations for dry, 
cohesionless particulate flows were proposed : 

-+pV*u DP = 0, 
Dt 

Du 
P- Dt = pg-V*((o,+a,), 

3 DT 
Dt 

$I--- = -V*qq, , -a , :Vu-I .  
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The first of these is the usual continuity equation in which p is the bulk density of 
solids and D/Dt  denotes the material derivative. The momentum equation (2.2) 
reflects the assumption that the total stress in the granular continuum is the 
sum of frictional uf, and collisional-kinetic, nc, contributions, with each calculated 
independently from constitutive expressions derived for the limits of purely 
collisional and purely frictional interactions, respectively. I n  (2.2) u and g represent 
the mean velocity and specific body force. Because the collisional-kinetic constitutive 
expressions depend on the bulk density, rate of deformation and the grain 
temperature T ,  the balance equations for mass and momentum are supplemented by 
the ‘ pseudo-thermal energy equation ’ (2.3). This equation represents a local balance 
of pseudo-thermal energy (=gpT) between the flux divergence V-q, , ,  the rate of 
generation due to shearing -uc:Vu, and the rate of dissipation/volume I due to 
inelastic collisions. The latter quantity depends on the particle-particle coefficient of 
restitution ep .  Inherent in the derivation of (2.3) is the postulate that frictional work 
generates true molecular internal energy (heat), and does not contribute to the 
generation of pseudo-thermal energy. 

2.2. Boundary conditions at solid and free surfaces 
For the situation where interactions between the particles and the boundary are 
entirely due to collisions boundary conditions were obtained by Hui et al. (1984) 
using heuristic arguments. Later Jenkins & Richman (1986) showed that the 
conditions could be derived more formally, using kinetic theory, provided that the 
boundary was endowed with a specific geometric structure, and their derivation 
revealed the omission of a physically important term from the conditions of Hui et 
al. Neither of these works addressed the case of interest here, where both frictional 
and collisional interactions are important, but Johnson & Jackson (1987) derived 
boundary conditions for this case using arguments similar to those employed by Hui 
et al. (1984). For the limiting situation in which collisional effects dominate, these 
conditions reduce to the same form as those of Jenkins & Richman, but with certain 
parameters to be determined by measurement since the boundary geometry is not 
invoked explicitly. In  the present work the conditions of Johnson & Jackson will be 
used and a sketch of their derivation follows. 

By equating the stress exerted by flowing particles on a solid boundary with the 
limit of the stress in the material on approaching the boundary, the following 
condition on the slip velocity results: 

Here the slip velocity, uS1 = u - uwall, is the relative velocity between the wall and 
particles in contact with it, while n is the unit normal vector directed from the 
boundary into the material. The solids volume fraction is denoted by v, which is 
related to the bulk density of solids p and the density of a single particle pp by p = 
pp v. The solids volume fraction for a random close packing is represented by yo, and 
in this work it is assigned the value 0.65. The first term in (2.4) represents the limit 
of the stress in the material on approaching the boundary, while the second and third 
terms represent the stress acting on the boundary due to particle-wall collisions and 
friction, respectively. The former is proportional to a ‘ specularity coefficient ’, $’, 
which is defined to be the average fraction of relative tangential momentum 
transferred in a particle-boundary collision. I ts  value depends on the large-scale 
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roughness of the surface and varies between zero for perfectly specular collisions and 
unity for perfectly diffuse collisions. The magnitude of the tangential frictional 
contribution to the stress is assumed to be Nf tan 8, where Nf is thc normal frictional 
component of stress and S is the angle of friction between the surface and the 
particulate material. 

From an energy balance on a slice of vanishingly small thickness enclosing an 
element of the solid boundary, the following condition can also be derived: 

-n-q , ,  = 9+fu,,.SE. (2 .5)  

Equation (2.5) is a statement that the flux of pseudo-thermal energy to the boundary 
equals the difference between the rate of pseudo- thermal energy dissipation/area due 
to inelastic particle-wall collisions, 9, and the rate of energy generation that occurs 
as particles slip along the boundary. SE is the force per unit area on the boundary due 
to grain-boundary collisions, as given by the second term on the left-hand side of 
(2.4). uS1 - SE is inherently negative and represents a production of pseudo-thermal 
energy. An expression for 9 proposed by Johnson & Jackson (1987) is 

where e ,  is the particle-wall coefficient of restitution. 
For flows involving free surfaces, additional stress and pseudo- thermal energy 

boundary conditions are needed. A pseudo-thermal energy balance on an infinitely 
thin control region a t  the surface indicates that the flux of pseudo-thermal energy 
must vanish, so 

n-q, ,  = 0. (2.7) 

There are two approaches to developing a stress condition a t  the free surface. The 
first is to adopt the traditional stress-free surface conditions : 

n - n - ( o , + o , )  = 0 (2.8) 

and n.t . (o ,+o,)  = 0 (2.9) 

which require the total normal (2.8) and tangential (2.9) stresses acting a t  the free 
surface to vanish. (Here t denotes a unit vector in the direction of flow.) However, 
these give rise to difficulties unless the free surface is a t  infinity, since the numerical 
results indicate that the stress retains quite large values to within a fraction of a 
particle diameter of the nominal free surface, after which it drops rapidly to zero. 
This is physically unrealistic and also introduces a stiffness problem in the numerical 
solution. An alternative approach is to recognize the discrete nature of the 
particulate material by writing a force balance on the particles in the layer adjacent 
to the free surface: 

$71ppd3g = n . ( a , + ~ , ) q ! ( v ) ,  (2.10) 

u,(v) = d2(vo /v ) i .  (2.11) 

where a,(u), the area occupied per particle, is given (Johnson &, Jackson 1987) by 

When (2.10) is combined with (2.11) and constitutive expressions are specified for of 
and G,, it  provides conditions on the total shear and normal stress a t  the free surface, 

In  writing (2.10) we recognize that each particle in the uppermost layer has a non- 
vanishing weight that must be supported. Though this seems reasonable for flowing 
layers with sharply defined surfaces, at small flow rates, where the density is very 
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low, our experiments show that the upper surface is quite diffuse and the physical 
relevance of (2.10) is then less clear. A more satisfactory approach to the free surface 
will be presented below in $5, but this has been used for only a limited number of 
cases as the computations are much slower and more expensive than those based on 
(2.10). 

2.3. Constitutive theory 

As in Johnson & Jackson (1987) we adopt existing constitutive expressions for q, a,, 
qPT, and I. Recently, the development of collisional constitutive expressions has been 
the goal of many theoretical studies (Savage & Jeffrey 1981 ; Jenkins & Savage 1983 ; 
Lun et al. 1984; Jenkins & Richman 1985). Most derivations follow the framework 
developed for gas kinetic theories, and hence all are very similar. While all theories 
include the limit of high particle densities, only the expressions presented by Lun 
et al. (1984) are supposed to be applicable over the entire range of solids volume 
fractions. A slightly modified form of their constitutive expressions is as follows : 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

where m is the mass of a single particle, d the particle diameter, p p  the density of a 
single particle, and ep  denotes the coefficient of restitution for particle-particle 
collisions. Equations (2.12)-(2.15) are the same as the expressions derived by Lun 
et al. (1984) except for the multiplicative factor 5(2+a) appearing in front of the 
deviatoric part of a,. a is a constant of order unity that appears in expressions 
derived earlier by Jenkins & Savage (1983), but was eliminated in the analysis of Lun 
et al. It is a measure of the anisotropy of the distribution of collisions on a sphere in 
a shear field, and it is convenient to reintroduce it here as an adjustable parameter 
that must tend to unity when ep + 1 and v+ 0, for consistency with the kinetic theory 
of dilute gases. The second modification to the constitutive expressions of Lun et al. 
is the replacement of the Carnahan-Starling form of the radial distribution function 
gdv) by 

1 
1 - (v/vo)i’  go = (2.16) 

which ensures that go+ 00 when v +  v,, and hence constrains the solids volume 
fraction to remain less than the close-packed value yo. 

Most of our calculations were actually performed with the term in Vv omitted from 
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(2.13). This term, which generates a pseudo- thermal energy flux proportional to the 
gradient of particle concentration, contains a factor (vj - 1) which is always negative, 
so it predicts a physically unreasonable flux in the direction of increasing density! 
However, the numerical results are almost unaffected by inclusion or exclusion of 
this term, and this points to the source of the difficulty. The constitutive relations are 
approximations valid only when particle-particle collisions are almost elastic, and 
this term can be shown to represent a contribution to the energy flux of higher order 
in the inelasticity than the remaining terms. Indeed, to the same order of 
approximation as it can be neglected, 7 can be replaced by unity in the remaining 
terms, and direct calculation again confirms that the results are only slightly 
changed. 

Constitutive theories for the frictional stress are empirical in nature and depend on 
quantities not directly related to physical characteristics of the grains such as the 
particle size, or surface roughness. The theories proposed by de Jong (1959,1977) and 
Mandel (1947) assume that deformation is a superposition of rotations and plane 
shears on surfaces where the ratio of frictional shear stress S, to frictional normal 
stress Nf  reaches a prescribed value. The bulk density changes induced by yielding 
and shearing are not inherent features of these theories, but they are accounted for 
in the ‘critical-state’ theory developed by Drucker & Prager (1952), Roscoe, 
Schofield & Wroth (1958), Schofield & Wroth (1968), and Roscoe (1970). 

For the case of steady plane shear flows treated here we are fortunate not to have 
to choose between the available theories, as all reduce to the Coulomb relationship 
between the frictional shear, S,, and normal, Np,  stresses: 

S, = Nf sin Q,, (2.17) 

where Q, is the ‘internal angle of friction ’, a quantity measured in slow plane shearing 
experiments. (Note that some authors prefer to define Q, by the relationship 
8, = Nf tan q5 so some care should be exercised when comparing various values of q5 
from the literature.) 

Experimental observations indicate that the frictional normal stress increases 
rapidly with bulk density and diverges as the close-packed bulk density vo is 
approached. A simple algebraic representation of this behaviour is 

where Fr,  n, and p are constants. Frictional behaviour at low values of u has yet to 
be observed so we assume that frictional interactions no longer occur at values of 
v < umin for which evenly distributed particles no longer touch. Equations (2.17) and 
(2.18) are the constitutive expressions for the frictional contribution to the total 
stress, and we assume that they remain valid for more rapid deformations in which 
collisional interactions also contribute to the total stress. 

3. Theory of fully developed flow down an inclined plane 
The inclined chute serves as an important component of many industrial solids 

transport processes and flow down inclined planes is of geological interest. 
Accordingly, many investigators have studied this system (Augenstein & Hogg 1978 ; 
Campbell et al. 1985; Patton et al. 1987), some focusing on interesting and unusual 
behaviour such as ‘granular jumps’ (Brennen et al. 1983). In this study as in other 
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FIGURE 1. Inclined-plane shear flow. 

investigations (Savage 1978, 1979, 1983; Ishida & Shirai 1979; Hutter & Scheiwiller 
1983) the inclined chute is used to obtain flow measurements that are compared with 
predictions of constitutive theories. 

3.1. Equations of motion 
In the following analysis gravity-driven flow down an inclined chute is modelled by 
the steady, fully developed flow depicted in figure 1. The flow properties depend only 
on the coordinate y normal to the plane of shear. Our objective is to predict the 
dependence of the mass flow rate and the flow variables u, T ,  and u on the inclination 
angle 8, flow depth H ,  and physical properties of the boundary and the grains. For 
this flow the continuity equation (2.1) is identically satisfied, while the two 
components of the momentum equation (2.2) and the pseudo-thermal energy 
equation (2.3) reduce to 

a 
ay 

0 = -[ f i ( V )  T* +iVF(V)] +Av, 

The boundary conditions (2.4) and (2.5) apply at  Y = 0 and take the following 
explicit form : 

and +ACf6(v) T*-A2BDf,(v) u * ~ .  (3.5) 

At Y = 1 the condition (2.7) reduces to 

-- aT* - - f !  T* (g) 
ay f S ( 4  

while the two components of (2.10), combined with (2.11), give 

v(Y = 1) 

[ vo 1 f*(v) T*+N;C(u) = +TC (3.7) 

FLM 210 17 
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and f,(v) T*i au* N $ ( v )  sin4 - ____- 
Ail$ a Y +  B 

Here the dimensionless mean velocity u*, grain temperature T", spatial coordinate 
Y ,  and frictional normal stress N $ ( v )  are defined by 

H '  (gH sin 8)A' (3.9) 
y = -  Y u*= T NAV) T* = ____ 

gd cos 8 ' *(') = pp gd cos 8 

and the dimensionless parameters A ,  B,  C, and D are given by 

(3.10) A = - ,  B = t a n 8 ,  C=(l-e:) ,  D = # ,  

while the dimensionless functionsf,(v) tof8(v) are defined in table 1 and depend on 
the solids volume fraction v as well as the grain-grain coefficient of restitution ep, 
through the associated variable 7 = $( 1 + ep). 

At high bulk densities (3.1), (3.2), and boundary condition (3.4) are strictly valid 
only when t a n 8  2 sin4 3 tan6. This is because the y-momentum equation (3.1) 
predicts that the total normal stress on any constant Y-plane, N*(Y), equals N:(v) 
when frictional stresses dominate. The total driving shear stress is N*( Y) tan 8 while 
the restraining force given by (3.2) is N;"(Y)sin+ in the frictional limit. Then if 
sin 9 > tan 8 the equations predict flow against gravity because au*/aY < 0 to satisfy 
(3.1) and (3.2). Thus, when finding solutions to  (3.1)-(3.6), we must remember to 
restrict the frictional shear stress within the grains and a t  the boundary to values 
that a t  most equal the driving force. I n  these situations the flow is said to be 'locked ' 
because au*/aY = 0. 

As noted earlier, in most of our calculations the constitutive relations were 
simplified in a way that replacesf,(v) by zero, thus eliminating the term in &/aY 
from (3.3), with negligible effect on the computed results. In  some of the calculations 
we will also omit the first term of the expression for f,(v) given in table 1, thus 
replacing it with 

H 
d 

fi(V) = 47v2g,(v). 



Equations of motion for particulate flows 509 

Physically this is equivalent to neglecting the kinetic contribution to the particle 
pressure. When the density of the material is high this would be expected to make 
little difference, since the collisional contribution dominates. At low densities, on the 
other hand, Lun et al. (1984) showed that the kinetic contribution leads to a 
prediction that the normal stress in plane shear increases without bound as the 
concentration of the particles tends to zero. While this may be formally correct in an 
unbounded medium it is unrealistic for layers of the thickness considered here, since 
the increase in stress occurs at concentrations where the mean free path length is 
comparable with or longer than the total depth of the layer in question. However, a t  
low flow rates the total depth of the flowing layer is observed to be a small multiple 
of the mean spacing between particle centres, while this in turn is several times the 
particle diameter. In these circumstances a significant fraction of all collisions 
involve a particle and the base of the chute, rather than a pair of particles. The 
situation is analogous to the transition region between bulk flow and Knudsen 
streaming for a gas, and this is notoriously intractable to theory. Nevertheless, the 
bounding of the thin, low-density layer by a solid surface will certainly prevent the 
development of the very large stresses generated by the kinetic contribution in an 
infinite medium. The device of simply ignoring the kinetic contribution to particle 
pressure does not provide an adequate treatment of this case, but it suppresses the 
divergence of the stress at low concentrations, and other difficulties which arise from 
i t  (Johnson 1987). We shall refer to this modification as the theory ‘with p ,  = 0’ .  
When this simplification is used the corresponding results using the full constitutive 
relations are also presented for comparison. 

3.2. Numerical solution 
As a preliminary to numerical solution, (3.1) and (3.2) are integrated between values 
Y and 1 for the independent variable. After invoking the boundary conditions (3.7) 
and (3.8) this gives 

and 

f , ( v ) T * + N f ( v ) = A ( i  vdY+&[ v(Y = 1) ] 
Y VO 

(3.11) 

(3.12) 

Using these equations the boundary condition (3.4) can be replaced by the following 
form, which gives the slip velocity directly : 

[tan 8- tan 6]N$(v)  + &fl(v) T*t 
u* = at Y = 0. 

A;&Df,(v) T*i AiDj2(v)f,(v) 
(3.13) 

The equations of motion are now (3.3), (3.11) and (3.12)’ while the associated 
boundary conditions are (3.5) and (3.13) at Y = 0, and (3.6) at Y = 1. 

A numerical solution is initiated by specifying initial approximate forms for u*(Y) 
and T*(Y), then calculating a corresponding density profile u(Y) from (3.11). The 
above equations and boundary conditions are then linearized about these 
approximate forms, N equally spaced grid points (including Y = 0 and Y = 1) am 
introduced, finite-difference approximations are substituted for the derivatives, and 
the integrals are approximated by the trapezium rule. The variable v is replaced by 
the initial approximation above, wherever it appears, yielding 2N linear equations in 
the unknown values of u* and T* a t  the grid points. The solution of these provides 
a new initial approximation, and the process described can be iterated. In practice 

17-2 
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FIGURE 2. Schematic of the experimental chute. 

it is found that convergence is better if some linear combination of the old and new 
approximations (typically 80 % of the old and 20 % of the new) is used to initiate the 
next iteration, rather than the new approximation itself. Iterations are continued 
until changes in the variables arc everywhere less than 0.01% of their absolute 
values. Experiments with different numbers of grid points indicate that increases 
beyond 81 have little influence on the solutions, and this was the number used in 
most of the work reported. 

A more detailed account of the computations is given by Johnson (lYSi'), but 
before discussing the results we will describe our experimental observations. 

4. Experiments with an inclined chute 
Although many studies have reported the observed flow behaviour of particulate 

materials in chutes (Savage 1978, 1979, 1983; Augenstein & Hogg 1978; Ishida & 
Shirai 1979; Brennen et al. 1983; Hutter & Scheiwiller 1983; Campbell et aZ. 1985; 
Patton et al. 1987), none of them is complete enough to provide a useful comparison 
with theoretical predictions. In particular, none of the authors investigated the effect 
of varying the entrance conditions. In  conjunction with our theoretical study, 
therefore, an experimental study was undertaken. 

4.1. Experimental apparatus 
Figure 2 is a schematic of the inclined chute flow loop. This consists of an upper 
supply hopper which feeds the chute through a pre-chute chamber. The particulate 
material flows down the chute into a collection hopper, which is equipped with a 
rotary airlock that feeds the material into a pneumatic transport line for return to 
the supply hopper. The system, when operated in a continuous fashion, has a 
maximum circulation rate of about 1.4 kg/s, limited by the capacity of the 
pneumatic transport system. The advantage of this system over those used by 
previous investigators (with the exception of Patton et al.) is that steady flows can 
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be maintained for indefinite time periods. Previous investigators were often limited 
to experiments less than a minute in duration. 

The flow channel is 1.4 m long and 6.35 cm wide, and is bounded by vertical glass 
walls 12.7 cm high. For the purpose of this study the base of the chute was lined with 
a smooth aluminium plate that could be removed and covered with different grades 
of sandpaper, thus varying its roughness. I n  the present work the base plate was 
either unlined, or lined with a layer of 160-grit sandpaper. These configurations will 
be referred to as the smooth chute and the rough chute, respectively. 

All the measurements reported here were made on a sample of 0.10 cm diameter 
glass beads. These were chosen because of the relatively high uniformity of material 
that could be obtained commercially. The diameters of the particles were specified by 
the manufacturer to vary from the mean by less than 10 YO. Physical characteristics 
of the beads will be discussed in $4.3. 

Mass flow rates were measured by weighing the amount of material leaving the 
chute over a short time interval. The flow depth was defined as the greatest distance 
above the chute base a t  which particles were observed to collide with an inserted 
impact plate. Flow depths measured in this way represent the maximum height 
above the base achieved by any particles in the flow. The mass hold-up mT in the 
flowing layer, per unit area ofthe base plate, was measured by the method customary 
in work on two-phase flow, namely the isolation of a known length of the flowing 
layer by barriers inserted upstream and downstream, rapidly and simultaneously. To 
accomplish this a rectangular box, of width equal to  that of the channel, was pushed 
quickly into the flow with its open face downward. When this reached the base plate 
of the chute the material within it was trapped, and could be weighed after draining 
the rest of the material from the chute. I n  this way the weight of a section of the 
flowing layer about 7 cm long was found. The ratio of mT to  the flow depth, gives the 
average bulk density within the flow. I n  addition to these measurements, velocity 
profiles were measured with fibre-optic probes, of the type described by Patrose & 
Caram (1982), located a t  31 cm intervals from the chute entrance. These probes were 
also used to measure free-surface velocities along the chute. This information, 
together with values of mT and the depth of the layer a t  various positions, waB 
valuable in determining whether or not flows had become fully developed before 
leaving. Details of the construction, calibration, and use of the fibre-optic velocity 
probes can be found in Johnson (1987), where there is also a more complete account 
of the experimental apparatus. 

In  chute experiments it is very important that B be measured as accurately as 
possible, since a change in inclination of only 0.5" can have a dramatic effect on the 
flow behaviour. In our experiments 6' was measured by a clinometer attached to the 
chute. This instrument, which was constructed from a precision protractor and 
sensitive bubble level, was accurate to  within 0.05". Uncertainties in other 
measurements were estimated at f 5 O h  for the mass flow rate and the mass hold-up 
per unit base area, and f 10% for the velocity measurements. 

Uncertainties in the measurement of the depth depend on the nature of the flow. 
High-density flows, v z 0.60, have distinct free surfaces and H can easily be measured 
to within the particle diameter. The concept of depth of the flowing layer is then well 
defined and the mean density, calculated as the ratio of mT to H ,  is also a useful 
concept, since the density appears to be uniformly high throughout the layer. At low 
flow rates, on the other hand, the density of the layer is very small, and can be seen 
to vary markedly with depth, while the upper surface of the flowing material is quite 
diffuse. The frequency of collisions with the impact plate used to locate the 'free 



512 P .  C. ,Johnson, P .  Nott and R.  Jackson 

surface ’ decreases gradually as the plate is raised, and there is no sharply identifiable 
‘surface’. Typically, at the lowest feed rates used, the mean value of the volume 
fraction solids, based on a ‘depth’ measured by the impact plate, is about 0.02. This 
corresponds to a mean spacing between particle centres of about three times the 
particle diameter, while the overall depth is only about six times this spacing. The 
concept of a flowing layer with a well-defined free surface and a meaningful mean 
density is then quite inappropriate: instead the particles move as a diffuse cloud 
whose density decreases continuously to zero with increasing height above the base 
plate. In  these circumstances mT is still a well-defined, measurable quantity, but the 
customary decomposition of this into factors representing a depth and a mean 
density is pointless and misleading. Since our experiments cover the whole range of 
behaviour from that just described to dense flowing layers with sharp surfaces, we 
choose to present our results as the relation between the flow rate and mT, rather 
than H ,  since mT is always well defined and measurable. 

A key component of the flow loop is the pre-chute chamber which connect,s the 
supply hopper with the chute entrance. It is this portion of the apparatus that 
enables us to control the state of the particulate material as it enters the chute. In 
figure 2 there is seen to be a slide valve at  the exit from the supply hopper, and also 
a gate valve a t  the exit from the pre-chutc chamber onto the chute proper. By closing 
the gate valve and opening the slide valve the pre-chute chamber can be filled with 
beads. If the gate valve is then opened, the material enters the chute in a dense, 
slowly moving state. For these ‘dense entry condition flows’, in which the slide valve 
remains open, the mass flux into the chute is controlled by the gate valve. In an 
alternative mode of operation the gate valve is left fully open and the flow is 
controlled by manipulating the slide valve. The beads leaving the hopper then fall 
freely a distance of 30 cm onto the base of the pre-chute chamber. This drop, and 
subsequent bouncing off the base, generates a low density, highly energetic state at 
the chute entrance, and the resulting flows will be referred to as ‘loose entry 
condition flows ’. 

4.2. Experimental observations 
Measurements were made by setting the slope of the chute and the openings of the 
valves that control the flow, then determining the depth H of the flowing layer, its 
mass hold-up mT, and the mass flow rate m per unit width of the chute. Velocity 
profiles were also measured for a number of cases. Results are presented as plots of 
m* m. mg, for a sequence of values of the chute inclination ranging from the smallest 
slope a t  which the material will flow, to a slope at which i t  continues to accelerate 
down the whole available length. Here m* denotes a dimensionless mass flow rate 
defined by m* = m/ppd(gd) i ,  and rn; is a dimensionless mass hold-up defined by 
6 = m,/p,d. Measurements for the smooth chute base are plotted in figures 4-9, 
while corresponding results for the rough chute base can be found in figures 11-15. 
I n  both cases the results for dense entry conditions, when the gate valve a t  the head 
of the chute is used to  control the flow, are distinguished from those corresponding 
to loose entry conditions, when flow is controlled by the valve a t  the outlet of the 
feed hopper. 

The observed behaviour is rather complex and is, perhaps, best explained by first 
describing a typical case, then indicating in what way the results differ for other 
cases. For this purpose we regard as typical the measurements on the smooth-based 
chute with inclinations of 15.5’ or 16O, and in figure 3 a sketch of thc m* 11s mg 
relation for this case is supplemented by sketches of the velocity profilcs at various 
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FIGURE 3. Summary of observed flow patterns. 

identified points on the plot, each of which is accompanied by a small diagram in 
which the distribution of density through the flowing layer is indicated by density of 
shading. 

At low values of h* (point 1) the material flows as a diffuse, low-density layer, with 
particles occasionally bouncing quite high, so that the depth, as measured by the 
impact plate, is large. Velocities are high throughout the layer and, in particular, the 
slip velocity a t  the base of the chute is large. The fully developed flow appears to be 
the same for both loose and dense entry conditions, though the transient behaviour 
leading to it is different. With loose entry conditions the flowing layer decelerates and 
thickens, while with dense entry conditions it accelerates and becomes thinner while 
approaching the fully developed conformation. 

When the flow rate is increased (point 2) a layer of markedly greater density forms 
above the base of the chute, with a diffuse layer of saltating particles, closely 
resembling the flowing layer at point 1, superimposed. The total depth, as 
determined by the impact plate, is smaller than at  point 1, and velocities are lower. 
The larger value of the flow rate is, therefore, reflected in the increase of the average 
bulk density. Once again the fully developed flow appears to be independent of the 
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entry conditions. As m* is increased the thickness of the dense sublayer increases, 
while the overall thickness decreases, so the dense layer occupies an increasing 
fraction of the depth. Velocities also decrease gradually, with decreasing slip velocity 
at the base plate. 

With further increase in m* (point 3) the diffuse saltating layer ‘condenses’ 
completely onto the dense layer, and velocities are again reduced. This point marks 
the boundary of operating conditions for which the fully developed flow is 
independent of entry conditions: for larger values of m* there are two separate 
branches of the m* us. m$ curve, corresponding to dense and loose entry conditions, 
respectively. Following the curve for dense entry conditions beyond point 3, there is 
a sharp reduction in slope, the upper surface of the flowing layer becomes well 
defined, and the average density rapidly approaches a value corresponding to a solids 
volume fraction of approximately 0.6, near to random close packing. At the same 
time the velocity profile reveals that the rate of shear in the upper part of the layer 
becomes small, so the flow profile resembles that of a block of material near close 
packing, sliding without deformation on a thinner, shearing layer in contact with the 
base of the chute. There is a marked decrease in the velocities, and the increase in m* 
is accounted for entirely by increases in the bulk density and the thickness of the 
flowing layer. These conditions correspond to point 4‘ on the m* vs. rn; plot. 

As riz* is increased further, with dense entry conditions (point 5’), the layer remains 
almost close packed, its thickness increases rapidly, and the velocities become much 
smaller. Most of the material is now sliding with little deformation, and shearing is 
essentially confined to a relatively thin layer at the bottom. This type of flow is 
sustained up to the highest flow rates achievable, limited by the capacity of our 
recirculation system. 

Turning now to the branch of the m* vs. rng curve representing flows generated 
from loose entry conditions, points 4 and 5 correspond to the same flow rates as 
points 4’ and 5’, respectively. As m* is increased along this branch the average 
density increases continually and the thickness of the flowing layer also increases, 
but much more slowly than was the case for the dense entry condition branch. At the 
same time velocities decrease, but again not nearly so much as in the case of the other 
branch. At high values of the flow rate (point 5 )  the density of the flowing material 
has increased to a value similar to that at the corresponding point, 5‘, on the other 
branch. Nevertheless, the two flows are very different. The thickness of the flowing 
layer at  a point such as 5 on the loose entry branch is less than half that of the layer 
at the point 5‘ of the dense entry branch, where the flow rate is the same, and 
correspondingly the velocities are more than twice as large. Furthermore, for points 
on the loose entry branch, the slip velocity at  the base plate is relatively large and 
the velocity profile gives no indication of the presence of the ‘ locked ’, non-shearing 
layer below the free surface which was characteristic of the dense entry branch. There 
appears to be an upper bound for the flow rate on the loose entry branch. For higher 
feed rates the flow reverts to points on the dense entry branch, provided the 
inclination of the chute is steep enough for this branch to exist, and this is 
represented by the horizontal arrow in figure 3. The mechanism of this transition is 
interesting and will be described below. 

We now consider the effect on this pattern of behaviour of changing the angle of 
inclination of the chute, The loose entry branches have steep slopes so, although m* 
increases with the chute inclination for a given value of mg, the position of the loose 
entry branch in the (h*, m;)-plane is not much affected by changes in the inclination 
angle. On the other hand the inclination has a marked effect on the position of that 
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F'IGURE 4. Observed relation between mass flow rate and mass hold-up for smooth chutes of 
inclinations 1 2 O ,  13" and 14". 

part of the dense entry branch that is separate from the loose entry branch. This is 
displaced upward with little change in slope as the inclination increases. As a 
consequence of these displacements of the separate branches, it is generally correct 
to conclude that their junction moves to higher values of h* as the inclination is 
increased. However, this is masked, to some extent, by the intervention of other 
phenomena partly associated with the fact that the lengths of these branches are, in 
fact, bounded. 

Considering first the loose entry branches, figure 4 shows observations of flows on 
these branches for small inclinations in the range 12" to 14". In each case the branch 
is bounded above at a flow rate less than the limit imposed by the equipment, and 
the maximum attainable value of m* increases with the inclination of the chute. For 
the values of the inclination on this figure steady flows cannot be established from 
dense entry conditions. The lowest value of the inclination is smaller than the angle 
of wall friction between a dense layer of the granular material and the base of the 
chute, so a dense layer rests quite immobile. For inclinations of 13" and 14" a dense 
layer can move, but the motion is of an irregular 'stick-slip ' nature, and there is no 
steady flow. If an attempt is made, using loose entry conditions, to increase the flow 
beyond the indicated upper bound of the loose entry branch, the flowing layer 
collapses and there is either no flow at all, at  12" inclination, or stick-slip flow at the 
larger slopes. 

At an inclination of 15" (figure 5 )  we first see steady flows developing from dense 
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FIGURE 5. Observed and calculated relations between mass flow rate and mass hold-up for a 
smooth chute of inclination 15". 

entry conditions. However, these exist only for sufficiently large values of the flow 
rate. Below m* = 10 only stick-slip flow occurs, and below about m* = 4 no flow is 
possible with dense entry conditions. At this inclination, therefore, the intersection 
of the dense and loose entry branches, observed for slopes of 15.5" and above, as 
already described, is forestalled by the disappearance of the dense entry branch. 

On the other hand, the existence of a dense entry branch at high flow rates 
provides a viable alternative mode of flow at the upper limit of the loose entry 
branch, and an increase in the feed rate a t  this point induces a jump to a point on 
the dense entry branch, as indicated by the horizontal arrow in figure 5. The 
mechanism of this transition is interesting. There is a sudden incrcase in the 
thickness of the layer and decrease in the velocity of the material a t  a point near the 
exit of the chute, then this change in thickness propagates upstream as a stccp front 
separating the two modes of flow, until the whole chute is occupied by thc deep, slow- 
moving layer that corresponds to the point on the dense entry branch. At  an 
inclination of 15.5" (figure 6) the uppcr bound of the loose entry branch ocrurs near 
the maximum attainable flow rate, and more will be said about this case below. For 
inclinations larger than 15.5" the loose entry branch docs not terminate within the 
range of the measurements, but we believe that the increase of its bound with 
increasing slope, observed a t  the lower inclinations, has simply carried it beyond the 
flow limit imposed by our equipment. 

Comparing the results for 15.5' and 16" (figures 6 and 7)  it is seen that the 
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FIGURE 6. Observed relation between maes flow rate and mass hold-up for a smooth chute of 
inclination 15.5'. 

intersection of the dense and loose entry branches moves upward as the inclination 
increases. However, at an inclination of 17' (figure 8) a new phenomenon appears. At 
low flow rates the loose and dense entry branches apparently coincide, as before, but 
on increasing the feed rate beyond about m* = 33, with dense entry conditions, there 
is a sudden and dramatic transition in which the depth of the flowing layer 
approximately doubles. This is indicated by an arrow pointing to the right in the 
figure. Further increases in flow rate then follow a dense entry branch, separate from 
the loose entry branch, with behaviour essentially the same as that observed at  
smaller inclinations. This branch can be retraced, as indicated by the open circles in 
the figure, and these extend well below the point at  which the dense entry branch 
separated as the flow rate was increased. However, in this region oscillations of the 
free surface are observed, associated with small-amplitude surface waves travelling 
upstream from the chute exit at  a speed estimated to be about 0.3 m/s. As the flow 
rate is decreased the amplitude of these oscillations increases until they apparently 
become large enough to trigger a second jump, leading back to the combined loose 
and dense entry branch. This is indicated by the arrow pointing back to the left in 
the figure. Apart from these transitions, and the hysteresis loop generated by them, 
the observed behaviour at a slope of 17' is similar to that at  15.5' and 16'. 

The above oscillations may be related to those reported by Campbell et al. (1985) 
in relation to the transition between supercritical and subcritical flow. Indeed, the 
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FIGURE 7 .  Observed and calculated relations between mass flow rate and mass hold-up for a smooth 
chute of inclination 16". Crosses indicate points for which computed velocity profiles are shown in 
figure 17. 

flowing layer on the dense entry branch just above the point of transition is 
subcritical, in their sense, while below the jump conditions are supercritical. 

When the inclination is increased to 18' (figure 9) no branching phenomena are 
observed. Loose and dense entry conditions generate the same flows over the whole 
range of attainable feed rates. Nevertheless, we suspect that a separation of the 
branches would still be observed if it  were possible to extend the conditions to higher 
flow rates. At  inclinations larger than 18" there were clear indications that fully 
developed flow conditions had not always been reached in the available length of the 
chute, so no results are given for such slopes. 

We appreciate the difficulty of being sure that acceleration is essentially complete 
in the flows we report as fully developed. In particular, the termination of the loose 
entry branches at  some maximum value of the flow rate, and the nature of the 
transition which then occurs, suggests that flows on these branches may merely be 
extended transients that would always eventually decelerate to rest, or to one of the 
dense entry flows, given a chute of sufficient length. One might also suspect that the 
length required for this will depend on the kinetic energy of random motion of the 
particles when they enter the chute; that is, on the height from which they fall. 
However, in all the results reported here, the observed properties of the flowing layer 
were constant, within the accuracy of the measurements, from the midpoint of the 
chute on. Measurements of the free-surface centreline velocity were also made with 
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FIGURE 8. Observed and calculated relations between mass flow rate and mass hold-up for a smooth 
chute of inclination 17'. Crosses indicate points for which measured velocity profiles are shown in 
figure 10. 

the fibre-optic probe, at  points between 46 ern and 137 cm from the chute entrance 
and, within the measurement accuracy of lo%, this appeared to become constant 
before the chute exit, even for the loose branches at the highest flow rates. With 
dense entry conditions acceleration to the fully developed flow was apparently 
complete quite near the top of the chute. In summary then, we cannot exclude the 
possibility that the loose entry branches represent extended transients, but they 
persist for sufficient distances that, from the point of view of applications, this 
distinction may be unimportant. 

Figure 10 shows a sample of measured velocity profiles for an inclination of 17'. 
These were taken 91.5 cm downstream from the chute entry, with the tip of the probe 
flush with the surface of the lateral wall. In figure 8 crosses identify the points 
corresponding to these measured profiles, and it is seen that two belong to the fast- 
moving branch, while the third is a slow, dense flow from well up the dense entry 
branch. The profiles are quite consistent with those sketched in figure 3 for 
corresponding conditions. It would be desirable to measure velocity profiles at the 
centreline, rather than the wall, but insertion of the fibre-optic probe more than 
1 cm into the moving layer caused significant reduction in the flow rate, indicating an 
unacceptable perturbation of the flow. 

The possibility of two different modes of flow for sufficiently high flow rates gives 
rise to an interesting phenomenon. As already described, at the upper bound of the 
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loose entry branch a small increase in feed rate initiates a much slower, deeper flow 
at  the chute exit, then this moves upward until it  occupies the whole chute. However, 
if the feed rate is decreased slightly during this transition, it is possible to halt the 
upward progress of the front separating the two modes of flow. There is then a steady 
flow pattern with a shallow, fast flow belonging to  the loose entry branch in the upper 
part of the chute, and a deep, slow flow belonging to the dense entry branch in the 
lower part. The two regimes are separated by a short transition region resembling a 
'hydraulic jump' in the open channel flow of a liquid. But conventional hydraulic 
jumps form only upstream of some obstruction in the channel, while in the present 
case there is no obstruction. 
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FIGURE 11. Observed relation between mass flow rate and mass hold-up for a rough chute of 
inclination 17'. 

In addition to the work described above tests were also performed on a 'rough' 
chute, whose base plate was lined with 160-grit sandpaper. This presents a surface 
consisting of densely packed, immobile particles of angular shape, in the size range 
100-200 pm. The resulting h* ws. rn; plots, shown in figures 11-15, are generally 
similar to those found with the smooth chute. We shall therefore confine our 
comments mainly to the differences. 

Steady flows are observed at larger inclination angles than in the case of the 
smooth chute, as might be expected, the range for the rough chute being 17O to 21". 
At an inclination of 17" (figure 11) only dense entry condition flows are reported. 
With loose entry conditions the flow collapses into the dense entry mode before 
leaving the chute, over the whole range of feed rates tested. When the inclination is 
increased to 18" (figure 12) both loose and dense entry branches are found. These 
coincide at sufficiently low flow rates, and the loose entry branch is bounded above 
by a transition to the other branch, of just the same sort as was observed in the 
smooth chute. The pattern of behaviour is the same at 19" inclination (figure 13), but 
now both the branch point where the loose and dense entry branches separate, and 
the upper bound of the loose entry branch, occur at larger values of the flow. The 
dense entry branch also shows a small hysteresis, the black experimental points 
representing results obtained with successive increases in flow rate, while the open 
circles represent conditions observed when the flow rate is subsequently decreased in 
steps from its largest value. This hysteresis is quite reproducible. At an inclination 
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of 20" (figure 14) the separation of loose and dense entry branches occurs just below 
the maximum attainable flow rate, and when the slope is further increased to 21" 
(figure 15) the two branches coincide over the whole observed range. 

In contrast to the case of the smooth chute, loose entry condition flows do not 
persist down to inclinations where dense flow is no longer possible. Instead the loose 
entry branch appears to be cut off by a rapid decrease in its upper bound at  an 
inclination, namely 17' (figure l l) ,  where dense entry flow is still possible. Another 
striking difference from the smooth chute is the absence of any jumps at the point 
of separation of the two branches, like those shown in figure 8. Correspondingly, 
oscillations of the surface of the flowing layer were never observed in the rough chute. 

Other differences are quantitative. In the rough chute the loose entry condition 
branches for different inclinations lie so close together as to be almost in- 
distinguishable if superimposed. Also, at  the highest flow rates the dense entry 
branches flatten to very small slopes. This may correspond to an observation of 
Campbell (1982), who noted that there was a maximum flow rate per unit width at  
each value of the inclination. By varying the width of his chute Campbell found that 
this increased with increasing width, whereas the mass flow rate per unit width was 
independent of width for loose, fast flows. 

Measurement of velocity profiles reveals another quantitative difference, which 
can be seen in the results for a slope of Z O O ,  shown in figure 16. The corresponding 
conditions, both on the dense entry branch, are identified by crosses in figure 14. It 
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FIGURE 13. Observed and calculated relations between mass flow rate and mass hold-up for a rough 
chute of inclination 19’. Crosses indicate points for which computed velocity profiles and bulk 
densities we shown 111 figure 18. 

is seen that there is little evidence of ‘locking’ of the upper layers in these flows; 
indeed, the velocity profiles are almost linear. This is, perhaps, to be expected in view 
of the larger resistance to  slip a t  the base of the rough chute. 

4.3. Comparison with theoretical predictions 

Apart from a all the parameters in the theory are, in principle, directly measurable. 
Though we do not currently have the means to make all these measurements with 
adequate precision, we have attempted to base the values used on the best 
independent evidence available to us, and have made no attempt to vary them to 
secure a better match between theory and observations. There are two reasons for 
this. First, as remarked earlier, the theory is no more than a first attempt to combine 
features of both collisional and frictional contributions to the stress. The way this has 
been done is so simplistic that  i t  is inconceivable it could generate quantitatively 
accurate predictions of behaviour. I ts  success should, therefore, be judged by the 
extent to which its predictions mat,ch the observed pattern of the observations over 
as wide as possible a range of operating conditions, using parameter values that are 
physically reasonable and consistent with such independent measures as are 
available. Second, any serious attempt to explore the effects of varying so large a set 
of parameters would be very time consuming and costly, and this must be set against 
the possibility of uncovering interesting varieties of behaviour within physically 
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FIGURE 14. Observed and calculated relations between mass flow rate and mass hold-up for a rough 
chute of inclination 20'. Crosses indicate points for which measured velocity profiles are shown in 
figure 16. 

realistic ranges of parameter values. In  what follows we shall, therefore, first discuss 
the basis for our choice of parameter values, then compare the predicted and 
observed patterns of behaviour. 

Properties of the glass beads needed for theoretical predictions are listed in table 
2. The particle diameter and density are specified by the manufacturer and were 
checked by independent measurements. The internal angle of friction was measured 
with a Jenike-type shear tester, while the wall angle of friction was determined as the 
largest angle of inclination of the chute a t  which a layer of the beads several 
centimetres thick could rest without sliding. Angles of wall friction are quoted for 
both the smooth and the rough chute bases. No attempt was made to make separate 
measurements of friction a t  the sidewalls. Though the presence of these walls 
undoubtedly influences the quantitative results, the solution obtained here is one- 
dimensional, corresponding to a chute of infinite width. The coefficient of restitution 
for collisions between particles was estimated roughly by visual observation of the 
height of rebound of a particle from a glass plate, and the coefficient of restitution 
for particle-wall collisions was similarly found by observing rebounds from the base 
plate of the chute. The speeularity eoeficient is more difficult to  measure, and 
reasonable values were simply assigned arbitrarily, with a relatively small magnitude 
for the smooth aluminium and a larger value for the sandpaper, from which rebounds 
are observed to scatter quite widely. 
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particle diameter 
solids density 
internal angle of friction 
wall angle of friction - smooth aluminium 
wall angle of friction -~ 160 grit sandpaper 
grain-grain coefficient of restitution 
grain-wall coefficient of restitution - smooth aluminium 
grain-wall coefficient of restitution - 160 grit sandpaper 
specularity coefficient - smooth aluminium 
specularity coefficient - 160 grit sandpaper 

0.10 cm 
2.90 gm/cm3 
28.5" 
12.3' 
15.0' 
0.91 
0.91 
0.80 
0.25 
0.60 
o.5 (v-0.50)' 

(0.65-u)' 
N,(u) frictional normal stress at the critical state (v 2 0.50) (gm/cm-s2) 

a constant appearing in fz(v) 2.0 

TABLE 2. Physical properties (the wall angle of friction 6 is defined to be the angle below which 
no sliding is observed on an incline) 

It remains to  discuss the dependence of frictional normal stress on solids volume 
fraction, which was investigated by Scarlett & Todd (1969). For materials of our type 
their experiments indicate that Nf increases very rapidly as v approaches v,,,, the 
maximum density of random packing. Their results shed no light on the form of Np 
at very low normal loads, but it is reasonable to  suppose that it will vanish for Y 
smaller than some value vmin, a t  which the particles can no longer retain long-term 
contacts. We have therefore chose n = 5, p = 2, vmin = 0.5, and v,,, = 0.65 in the 
normal stress equation (2.18). The multiplier Fr is then chosen so that v = 0.58 under 
a normal load equal to the weight of an overburden of a few centimetres of the 
particulate material. This is a typical value of v for particles poured into a container 
under gravity. 

Computed curves of m* vs. m;, both from the full theory and from the theory with 
pk = 0, are shown for the smooth chute in figures 5,  7 and 8, corresponding to 
inclinations of 15", 16' and 17'. I n  both versions of the theory the function f 4 ( v ) ,  
listed in table 1, was replaced by zero, which is equivalent to omitting the 
contribution to the energy flux proportional to the gradient of particle concentration. 
This affects the predicted mass flow rates by less than 1 YO. 

The general shape of each curve is convex upward and quite steep a t  small values 
of m:, and the ordinates increase progressively with the inclination. This corresponds 
well with the pattern found experimentally for the dense entry branches. At 
inclinations of 15" and 16" (figures 5 and 7) each curve consists of two branches, 
apparently separated by a discontinuity, and this discontinuity decreases in 
amplitude and shifts further up the curve when the inclination is increased. A t  an 
inclination of 17" (figure 8 )  there is no longer any discontinuity in the curve for 
p ,  = 0, while solutions were found only for small values ofm* in the case of the full 
theory. Figure 17 shows computed velocity profiles at the points represented by 
crosses in figure 7. Across the discontinuity it is seen that shearing ceases at the 
surface and the uppermost layers of material 'lock up' into a block that slides 
without deforming. There is an increase in the mean density and a decrease in the 
mean velocity, bu t  the latter dominates, and consequently the mass flow rate 
decreases. Beyond the discontinuity m* resumes its increase with increasing m:. It 
is likely that the computed curves are not actually discontinuous, but have 
intermediate branches joining the upper and lower branches shown in the diagrams. 
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FIGURE 17. Computed velocity profiles for a smooth chute of inclination 16'. Theory with 
p ,  = 0. Corresponding conditions are identified by crosses in figure 7 .  

ul(gd)t 

However, we have not found a numerical procedure which converges to points on 
these branches. Recalling that our method of feeding particles to the chute 
effectively controls their flow rate, the presence of discontinuities in the theoretical 
curves may correspond to the jumps which are observed to occur in the 
neighbourhood of the point of separation of the loose and dense entry branches at  an 
inclination of 17' (figure 8). Though the theory actually predicts discontinuities only 
for inclinations of 16" and below, this range could be changed by quite minor 
modifications in the parameter values. 

The three computed velocity profiles shown in figure 17 illustrate very clearly the 
rapid development of 'lock up'  on moving up the curves. The profile corresponding 
to the largest value of m* shows most of the depth occupied by a sliding, rigid block 
of material riding on a relatively thin shearing layer. The experimental vclocity 
profiles of figure 10. which correspond to the points distinguished by crosses in figure 
8, again show the development towards a thick, slow-moving layer of material with 
little shear in its upper parts as the flow rate increases. Thus the observed pattern of 
change of the velocity profiles on moving along the (m* rng)-curvc is reproduced by 
the theory. 

Though the pattern of behaviour on the dense entry branches appears t o  have been 
modelled reasonably well the quantitative accuracy of predicted flow rates is not 
high, and it follows that good quantitative predictions of velocity profiles will not be 
obtained. As noted earlier, this is not to be expected at  the present stage of 
development of the theory. However, a t  low flow rates the theory does not even give 
a qualitatively correct account of the flow, though this is not apparent from the plots 
of m* us. mg. In  this range the observed depth of the flowing layer decreases with 
increasing flow rate, while the theory predicts that it will increase. Furthermore, the 
theory predicts nothing resembling the dense sublayer which is observed to develop 
before the separation of the loose and dense entry branches as the flow rate is 
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increased. However, these remarks must be viewed in the light of what was said 
earlier about the difficulty of identifying a free surface a t  low flow rates, and in $5 
we shall show that these qualitative shortcomings in the theory are most likely 
associated with the treatment of the free surface. 

For the smooth chute in no case was anything resembling the loose entry branch 
predicted. The extension of the lower parts of the curves a t  the discontinuities might 
be regarded as the start of such a branch, but they do not extend nearly far enough 
to account for the observations. It is not clear whether this represents a real failure 
of the theory or whether, as suggested earlier, the extended loose entry branch 
observed experimentally is not truly a fully developed flow, but would revert to the 
dense entry branch in a long enough chute. 

From table 2 it is seen that only the parameters 6, e ,  and 4' must be changed to 
permit computations for the chute with the rough base, and the results of such 
computations are presented in figures 12, 13 and 14. For an inclination of 18" (figure 
12), using the parameter values listed in table 2, the theory predicts a single curve 
relating m* to m;. At points on this curve the material is everywhere close to 
maximum density and the velocity profile is essentially flat. Thus the material is 
predicted to slide as a dense, rigid block, evcn a t  the lowest feed rates. 

Results a t  18" inclination are also presented for modified parameter values, e, = 

0.85 and $' = 0.45. These modest changes in the parameters induce a major 
qualitative change, namely the appearance of a discontinuity of the same type as 
those seen earlier in figures 5 and 7,  but with a much larger jump separating the 
termini of the two branches. As before, the branch extending to large values of m$ 
represents a sliding block of material riding on a thin shear layer, while the other 
branch corresponds to much looser, faster flows. In  view of its extended length it is 
tempting to identify this second branch with the observed flows generated from loose 
entry conditions. However, the predicted mean density of the flowing material 
decreases monotonically as m* increases along this branch, while the measured 
density on the loose entry branch increases as the flow rate increases. At high flow 
rates, therefore, on this branch the theory predicts a diffuse flowing layer of low 
density, in contrast with the observation of a thin, dense layer. Consequently we 
must conclude that this theoretical branch does not represent any behaviour actually 
observed in our tests. 

At an inclination of 19" (figure 13) two branches of solutions are found with the 
parameter values listed in table 2, and these retain the qualitative features described 
above for 18" slope. Two branches are also predicted for an inclination of 20", as 
shown in figure 14, but the loose branch is now bounded above a t  quite a small value 
of m*. At this inclination results are also presented for the theory modified by setting 
p ,  = 0. This has little effect on the dense branch, as might be expected since 
translational contributions are only a small proportion of the total stress, but the 
loose branch now extends to the largest value of m* for which computations were 
performed, corresponding to a discontinuity of very large amplitude. As in the case 
of the smooth chute, we suspect that the curves for the rough chute are not actually 
discontinuous, but we have not succeeded in generating solutions corresponding to 
points on branchcs which would conncct those plotted. 

The quantitative predictions of m* on the dense branches are very poor for the 
rough chute, though the pattern of behaviour in response to changes in flow rate and 
chute inclination is, once again, correctly represented. The predicted velocity and 
density profiles shown in figure 18 indicate that our choice of parameter values could 
be improved. These profiles correspond to conditions identified by crosses in figure 
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13, one on each of the branches. As noted earlier the dense solution is essentially a 
layer of maximum density sliding as a rigid block. There is much less evidence of the 
existence of a shearing layer in contact with the base than was found in the 
computations for the smooth chute presented as figure 17. In contrast, measured 
velocity profiles on a dense entry branch, shown in figure 16, exhibit shearing 
throughout the depth of the layer and little evidence of locking. It appears, therefore, 
that our choice of parameter values has led to underestimation of the energy input 
into the moving layer due to slip at  its contact with the base of the chute. 
Consoquently the layer is denser and less mobile than it should be, and the flow rate 
is smaller for a given mass hold-up. 

5. A reconsideration of the free-surface boundary condition 
At low feed rates our theoretical results predict an increase in depth of the flowing 

layer with increasing flow rate, while we observe that the depth actually decreases 
as the flow rate increases. This, and the failure to predict a loose entry branch with 
the observed behaviour, are the main qualitative shortcomings of the theory. 
However, at  low flow rates the concept of a depth for the flowing layer is ambiguous, 
since the material is observed to flow as a diffuse cloud of saltating particles 
occasionally bouncing to considerable heights. In these conditions one is led to 
question whether the theoretical picture of the surface as a geometric plane, on which 
boundary conditions can be specified, is at  all realistic. At  high flow rates, on the 
other hand, the surface is observed to be well defined within one particle diameter, 
and the specification of free-surface boundary conditions seems entirely appropriate. 
We are thus led to ask whether the diffuse nature of the upper boundary at  low flow 
rates and its sharp form at high flow rates ought not to be predicted, as consequences 
of a properly formulated theoretical description. 
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With this in mind we will reformulate the theory without the a priori concept of 
an  upper surface. Instead we shall simply require that the bulk density should tend 
to zero with increasing height, derive asymptotic low-density solutions appropriate 
to describe the behaviour when the density becomes small, then match our numerical 
solutions to these a t  some sufficiently large height above t,he base. This process is 
then left to decide for itself whether or not there is a large change in density over a 
small distance, corresponding to a recognizable free surface. 

5.1. Matching to an asymptotic solution 

To be consistent with our earlier theoretical work we replace f4(v) by zero throughout 
in what follows. Taking the limiting forms of the functions fi, f2, f3 and f, (table 1) 
as v+O,  the equations of motion (3.1), (3.2) and (3.3) reduce to:  

a 
- [ V T ]  = - vg eos 8, 
ay 

(5 .3)  

where p and y denote the limits of fi andf, respectively when v tends to zero, f, is 
written as wv2, and H ,  which is used to  form the dimensionless coordinate Y ,  is now 
just an arbitrary scaling length to  be determined later. When y-f 00 we demand that 
v + O  and that the derivatives of u* and T* should both tend to  zero, so that the 
stress and the flux of pseudo-thermal energy will both vanish. Thus, for large y, we 
write u* = u$,+u'* and T* = TZ+T'*. Then v, u'* and T* are small far from the 
chute base, and all terms in the above equations (except the energy dissipation term, 
which would vanish) can be linearized in these variables. The resulting equations can 
then be solved explicitly, to give the following asymptotic forms for the solutions: 

where v" represents the value of v at Y = 1. 
In  solving the equations of motion (3.1), (3.2) and (3.3), the boundary conditions 

(3.6), (3.7) and (3.8) a t  Y = 1 are now replaced by the requirement that the solution 
shall match, a t  Y = 1, the asymptotic solution given by (5.4), (5.5) and (5.6) above. 
Thus H becomes the height above the base at which the numerical and asymptotic 
solutions are matched. To start a numerical solution a value must be specified for H ,  
thus determining the parameter A .  Specification of v ( l ) ,  u*(l)  and T*( l )  then 
determines the values of yo, uz and T$, from (5.4), (5.5) and (5.6) applied at Y = 1. 
Equations (5.5) and (5.6) can then be differentiated with respect to Y and, after 
setting Y = 1, they determine the first derivatives of u* and T* at this point. Since 
(3.1) is of the first order, while (3.2) and (3.3) are second order, initial conditions are 
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FIUURE 19. Theoretical bulk density profiles for a smooth chute of inclination 16', obtained by 
matching to an asymptotic solution. 
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now available to initiate a numerical integration in the direction of decreasing Y ,  
starting a t  Y = 1. This can be continued to Y = 0, where the boundary conditions 
(3.5) and (3.13) must be satisfied, and this requires iterative adjustment of the values 
of u*(1) and T*(l). Then there remain two parameters whose values are assignable, 
namely H and ~ ( 1 ) .  However, by reverting to  the dimensional form of the equations, 
i t  is easy to see that pairs ( H ,  v( 1)) and (W, v'( 1)) correspond to different points on the 
same asymptotic solution if 

Thus, by varying H and making compensating changes in u ( l ) ,  as specified by this 
relation, the numerical solution can be matched to the same asymptotic solution a t  
different heights above the base plate, thus checking that the result is not 
significantly affected by the matching height. The remaining freedom in the choice 
of these constants permits the one-parameter family of solutions for a given angle of 
inclination to  be generated. 

The numerical procedure actually used differs from this, in that  it is formulated in 
terms of integrated forms of the momentum balances, and resembles that described 
in $3.2 sufficiently closely that further details need not be given here (see Johnson 
1987). Convergence is slower than in the earlier calculations using free-surface 
boundary conditions, about a thousand iterations being needed to achieve 
comparable accuracy. Consequently a relatively small number of cases was studied. 
I n  figure 7 the m* us. rn; curve predicted in this way for an inclination c?f 16" is 
represented by a dotted line, and it is seen to differ little from the results found with 
a free-surface boundary condition. However figure 19, which shows computed 
density profiles at three points on this curve, has some new features. At the lowest 
feed rate, m* = 2.9, the bulk density is low and decreases steadily on moving up from 
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the base, and there is no very well-defined upper surface. When m* is increased to 8.3 
there is a region of quite high, and almost constant density immediately adjacent to 
the base, then a layer above this where the density decreases steadily. This is a new 
feature, not found with the free-surface boundary condition, and it appears to 
simulate the formation of the dense sublayer seen in the experiments. As also 
observed experimentally, the thickness of the predicted dense layer increases as the 
feed rate is increased, until a density profile like that shown for riz* = 18.0 is 
obtained. This retains a high density up to a certain value of the depth, where there 
is a sudden decrease, so the theory now predicts the formation of a sharp upper 
surface, in agreement with the observed behaviour. 

For each of the computed density profiles in figure 19 the numerical solution was 
matched to the asymptotic solution where v = 0.001. Though each of the curves 
appears to intersect the v = 0 axis a t  a finite value of y / d ,  the value of u actually 
decreases exponentially as y --f 00, as required by (5.4), and this decay is slowest for 
the lowest value of the feed rate. Thus, the curves cross as they approach the axis 
u = 0, and a diffuse low-density region extends to  greater heights at the lower values 
of the feed rate. This is in qualitative agreement with the observation that the depth, 
as determined with the impact plate, decreases with increasing flow rate at small 
values of the flow rate. However, the predicted densities in this ‘crossover region are 
very low indeed. 

6. Concluding remarks 
I n  this and a previous paper (Johnson & Jackson 1987) we have explored some 

consequences of a constitutive model for granular materials which represents a first 
attempt to deal with situations where both frictional and collisional mechanisms of 
stress generation are significant. Our results indicate the importance of taking both 
mechanisms into account when dealing with flows in the Earth’s gravity, in the 
absence of large, fixed overburdens. I n  these circumstances we have seen that either 
mechanism may dominate, and it is not uncommon for collisional and translational 
contributions to be the principal mechanism near a free surface, while frictional 
effects become predominant at quite modest depths. If either mechanism is omitted 
major qualitative features of the solutions are lost, 

Our results also emphasize the importance of experimenters reporting fully the 
procedures t y  which their flows are initiated. I n  the case of plane shear of a 
horizontal layer discussed earlier (Johnson & Jackson 1987), this means that the 
sequence of operations used to prepare the sample and initiate the flow must be 
specified fully. In  addition, for the case of chute flow treated here, the method used 
to feed the material into the chute must be specified, and the effects of changing this 
method should be explored. 

The computed results are intended to illustrate the types of behaviour the model 
can predict. They in no sense represent a ‘ best fit ’ between theory and experiment, 
since only reasonable representative values of the parameters were used. The small 
number of calculations performed with alternative parameter values suffice to show 
that even the qualitative nature of the predicted behaviour can change in response 
to modest changes in the parameters. The qualitative behaviour of the dense entry 
branch is predicted well, even to such details as the discontinuous jumps seen in 
figure 8, the change in shape of the velocity profile on moving along the branch and, 
with the modified treatment of the free surface given in $5, the development of a 
relatively dense sublayer as the flow is increased from small values. However, the 
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quantitativo accuracy of the predictions is poor. Though this might be improved by 
more precise experimental measurements of the parameters characterizing the 
particulate material, there are two obvious sources of error, one experimental and 
one theoretical. Experimentally, the observed flow in the chute is undoubtedly 
affected by the sidewalls, as can be seen from transverse velocity profiles at the free 
surface, but increasing the width of the chute would further restrict the range of 
conditions accessible within the capacity of our air lift. However, sidewall effects 
would be expected to  decrease the observed flows, while in practice they arc most 
often found to bc larger than those predicted. Theoretically, as remarked in $4.3, 
because of the unrcalistically simple way in which frictional and collisional 
contributions to the stress were identified separately, and combined additivcly, 
quantitative accuracy in prediction is not to  be expected. 

The main qualitative failure of the theory is the lack of second solutions 
rcpresenting the loose entry branch after it separates from the dense entry branch. 
(The second solutions found with modified parameter values for the rough chute have 
the wrong qualitative behaviour.) On the other hand, as noted earlier, it is possible 
that points on the separate part of the loose entry branch represent extended 
transients, rather than fully developed flows. 

The quantitative accuracy of prediction remains poor even a t  low feed rates, where 
the density of the flowing material is low, collisional effects dominate, and the crude 
empiricism used in introducing frictional effects cannot be blamed. Of course, the 
collisional theory itself is by no means exact, and it is applied in a situation where 
departures from a Maxwellian velocity distribution are not small. However, it is 
more likely that problems arise from applying a theory derived for an infinite 
medium to a shearing layer that is both thin and dilute, so that collisions between 
particles and the base of the chute assume an importance comparable with 
interparticle collisions, as in the transition to  Knudsen streaming of a gas. I n  the 
uppermost, and least dense part of the flowing layer the curvature of the free paths 
induced by gravity is also visibly marked. 
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